Novel "nonkinase" phorbol ester receptors: the C1 domain connection.
نویسنده
چکیده
In recent years, there have been great advances in our understanding of the pharmacology and biology of the receptors for the phorbol ester tumor promoters and the second messenger diacylglycerol (DAG). The traditional view of protein kinase C (PKC) as the sole receptor for the phorbol esters has been challenged with the discovery of proteins unrelated to PKC that bind phorbol esters with high affinity, suggesting a high degree of complexity in the signaling pathways activated by DAG. These novel "nonkinase" phorbol ester receptors include chimaerins (a family of Rac GTPase activating proteins), RasGRPs (exchange factors for Ras/Rap1), and Munc13 isoforms (scaffolding proteins involved in exocytosis). In all cases, phorbol ester binding occurs at the single C1 domain present in these proteins and, as in PKC isozymes, ligand binding is a phospholipid-dependent event. Moreover, the novel phorbol ester receptors are also subject to subcellular redistribution or "translocation" by phorbol esters, leading to their association to different effector and/or regulatory molecules. Clearly, the use of phorbol esters as specific activators of PKC in cellular models is questionable. Alternative pharmacological and molecular approaches are therefore needed to dissect the involvement of each receptor class as a mediator of phorbol ester/DAG responses.
منابع مشابه
Chimaerins, novel non-protein kinase C phorbol ester receptors, associate with Tmp21-I (p23): evidence for a novel anchoring mechanism involving the chimaerin C1 domain.
The regulation and function of chimaerins, a family of "non-protein kinase C" (PKC) phorbol ester/diacylglycerol receptors with Rac-GAP activity, is largely unknown. In a search for chimaerin-interacting proteins, we isolated Tmp21-I (p23), a protein localized at the perinuclear Golgi area. Remarkably, phorbol esters translocate beta2-chimaerin to the perinuclear region and promote its associat...
متن کاملInteraction of the Novel Anthracycline Antitumor Agent
Anthracycline antibiotics like doxorubicin (DOX) are known to exert their antitumor effects primarily via DNA intercalation and topoisomerase II inhibition. By contrast, the noncross-resistant cytoplasmically localizing DOX analogue, N-benzyladriamycin-14valerate (AD 198), only weakly binds DNA and does not inhibit topoisomerase II, yet it displays superior antitumor activity, strongly suggesti...
متن کاملThe nonkinase phorbol ester receptor alpha 1-chimerin binds the NMDA receptor NR2A subunit and regulates dendritic spine density.
Abnormalities in dendritic spines have long been associated with cognitive dysfunction and neurodevelopmental delay, whereas rapid changes in spine shape underlie synaptic plasticity. The key regulators of cytoskeletal reorganization in dendrites and spines are the Rho GTPases, which modify actin polymerization in response to synaptic signaling. Rho GTPase activity is modulated by multiple regu...
متن کاملKinetic analysis of the interaction of the C1 domain of protein kinase C with lipid membranes by stopped-flow spectroscopy.
The diacylglycerol (DG)/phorbol ester-dependent translocation of conventional protein kinase C (PKC) isozymes is mediated by the C1 domain, a membrane-targeting module that also selectively binds phosphatidylserine (PS). Using stopped-flow spectroscopy, we dissect the contribution of DG/phorbol esters (C1 ligand) and PS in driving the association and dissociation of the C1 domain from membranes...
متن کاملThe guanine nucleotide exchange factor RasGRP is a high -affinity target for diacylglycerol and phorbol esters.
RasGRP is a recently described guanine nucleotide exchange factor (GEF) that possesses a single C1 domain homologous to that of protein kinase C (PKC). The phorbol ester [(3)H]phorbol 12, 13-dibutyrate ([(3)H]PDBu) bound to this C1 domain (C1-RasGRP) with a dissociation constant of 0.58 +/- 0.08 nM, similar to that observed previously for PKC. Likewise, the potent PKC activator bryostatin 1, a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 61 4 شماره
صفحات -
تاریخ انتشار 2002